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A B S T R A C T

Polarization imaging plays an important role in underwater imaging technology, as it allows for the suppression 
of backscattering light and thus enhances the quality of underwater images. Furthermore, with advancements in 
computer hardware technology, deep learning (DL) has experienced rapid development in recent years. How-
ever, existing methods based on convolutional neural networks (CNN) have the limitations of local feature 
extraction and fail to full use of the salient target’s polarization features. In this paper, we propose a transformer- 
based improved U-Net (TIU-Net) to further improve the performance of underwater polarization imaging. The 
proposed TIU-Net leverages CNN and transformer module to extract short-range and long-range features 
respectively for underwater target reconstruction. Meanwhile, by entering multi-dimensional information, each 
of which has a different emphasis on the expression of target features, to enhance the performance and stability 
of the reconstruction model. Experimental results on our established polarization underwater dataset show the 
superiority of our proposed method for underwater imaging, achieving the efficient imaging and high-quality 
generalization imaging in highly turbid underwater environments.

1. Introduction

Underwater imaging technology plays a crucial role in compre-
hending, developing, utilizing and preserving the ocean [1,2]. However, 
underwater imaging usually has poor performance, due to the scattering 
and absorption of particles in the water. These particles induce scat-
tering phenomena, thereby deteriorating the final imaging quality. 
Tremendous efforts in optical theories and experiments, such as wave-
front shaping [3], transmission matrices [4], optical coherence tomog-
raphy [5], and correlated imaging [6–8], have been made to reconstruct 
target information in scattering media. Notably, polarization, as inher-
ence property of light, performs well against the scattering effects 
resulting from the particle in the water, due to its unique physical 
characteristics [9–12]. During the propagation process of light, its state 
of polarization (SoP) is less susceptible to the scattering media, which 
makes it possible to effectively suppress the affections from scattering. 
Polarization imaging [13–15] has been considered an effective method 
for imaging in scattering environments, including underwater environ-
ment. At present, a variety of underwater imaging restoration methods 
based on polarization imaging have been proposed [16–21]. Y.Y. 
Schechner has proposed an inversion algorithm based on polarimetric 

pictures to improve the quality of underwater imaging [18]. However, it 
only solved the problem in the relatively simple underwater environ-
ments. Besides, the considered conditions by the corresponding 
parameter estimation were always not comprehensive enough to ach-
ieve the higher-quality imaging. As a result, it has become one of the 
schemes to improve the quality of polarized underwater imaging by 
analyzing the characteristics of polarization information propagation 
underwater to achieve an accurate estimation of imaging model pa-
rameters [19–22] in order to obtain clearer underwater pictures and 
adapt to more underwater environments. However, there are also some 
limitations: 1) need for professionals to choose the proper parameters; 2) 
the inability to obtain outstanding performance in surroundings with 
more complicated scattering; 3) the rigorous requirements for imaging 
systems.

In recent years, deep learning (DL) technology has performed very 
well in the field of imaging through scattering media [23–27]. Con-
volutional neural networks (CNN), such as GAN [28], ResNet [29], has 
become the backbone of image processing due to the widespread 
application of DL technology. Similarly, in the field of polarization im-
aging, CNN-based underwater polarization dehazing algorithms have 
also performed well [30]. Furthermore, in view of the problem that the 
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degree of polarization (DoP) pictures and the angle of polarization (AoP) 
pictures will amplify noise during the acquisition process, the CNN- 
based processing method also has a good drying effect [31]. More-
over, it achieves noteworthy results to employ CNN-based target 
detection with DoP and AoP as the features [32–35]. In addition, 
considering the advantages of polarization information during the 
transmission process, utilizing the powerful feature extraction ability of 
CNN and special network structures, such as the attention mechanism, 
can enhance the expression of target polarization characteristics in the 
training process to improve the efficacy of target reconstruction in more 
intricate environments and enhance the generalization capability of the 
network model [36,37]. There is no denying that the performance of 
convolution operations has improved significantly compared to tradi-
tional methods, and it also overcomes some of constraints of traditional 
methods. But most CNN-based image reconstruction methods focus 
more on feature extraction of local details, which is not conducive to 
feature extraction over long distances. Particularly as the scattering 
environment grows more complex, the target information in the image 
requires more layers of convolution operation to adequately assess the 
target features. The network depth can be extended because the pres-
ence of the ResNet structure without encountering issues like gradient 
disappearing [29], but deeper network structures also mean requiring 
larger datasets and facing the challenge of how to guarantee general-
ization. At the same time, the gathering of datasets for target recon-
struction is also a very involved process, and to train a huge dataset 
effectively is also a challenge for hardware devices. As a result, it’s 
critical to fully leverage all available data within an appropriate network 
architecture.

Zhang et al. have found that the output field’s component of ballistic 
light is directly related to the model’s adaptability, and by boosting the 
detected component of ballistic light, the network’s generalization 
ability can be improved [38]. Importantly, compared to the intensity of 
light, polarization of light can better suppress the backscattering light 
while maintaining more of ballistic light component. Therefore, maxi-
mizing the benefits of polarization information is one of the effective 
ways to significantly increase the network’s capacity for generalization. 
So, a crucial question is how to fully exploit the benefits of polarization 
characteristics while working with limited datasets. Recently, the 
transformer [39,40] has demonstrated good performance in natural 
language processing [41,42] and computer vision tasks. Compared to 
CNNs, transformer-based models can obtain better long-range infor-
mation. Moreover, the transformer, compared with other structures that 
can extract information over long distances, can process data in parallel, 
making it more suitable for processing images with relative smaller 
consuming resources. Hence, in this paper, by introducing the trans-
former module to an improved U-Net, we have proposed a flexible 
transformer-based improved U-Net (TIU-Net) for reconstructing hidden 
objects with complex underwater scattering states. Combined the CNN 
and the transformer together for effectively perceiving polarization 
characteristics for reconstruction goals in underwater with high 
turbidity. In the case of using the prior from polarization physics of the 
actual scattering scenes, giving full play to the advantages of polariza-
tion information, the training set with one visible scattering environ-
ment and one fixed scattering imaging distance (SID) can effectively 
improve the learning process of the DL.

The structure of this paper is as follows. Chapter 2 introduces the 
physical basis and network structure of the proposed method, while 
Chapter 3 presents the parameter settings, experimental results, and 
analysis. Finally, in Chapter 4, we summarize our work.

2. Methodology

2.1. Polarization information

The modeling and analysis of polarized optical systems are very 
important for polarization applications. Various polarization charac-

terization methods exhibit distinct sensitivities towards specific features 
of the target. So, in this section, we will introduce the different polari-
zation features, which is essential for our investigations and analysis. 
George Gabriel Stokes has proposed that the Stokes vector can be ob-
tained directly by measuring the intensity [43], which can be calculated 
by receiving the intensity in different directions (i.e., 0◦, 45◦, 90◦, 135◦

and left-/right-handed circular polarizations) through the detector, and 
the its mathematical expression can be expressed as follows: 
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where S stands for the Stokes vector; I is the total intensity; Q is the 
intensity difference between the horizontal and vertical polarization 
directions (two orthogonal components), which can suppress backscat-
tering light to some extents [44]; U represents the intensity difference 
between the 45◦ and 135◦ polarization directions; V represents the in-
tensity difference between right-handed and left-handed circular po-
larization light. Other physical quantities that can represent the 
polarization information of received light, such as DoP and AoP, can be 
calculated by the Stokes vector. Among them, for linearly polarized 
light, the linear degree of polarization (DoLP) can be calculated, which 
represents the ratio of the components of linear polarizations to the 
entire light intensity: 

DoLP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Q2 + U2

√

I
(2) 

The fusion of polarization information and intensity information can 
provide complementary information (detail information and global in-
formation of the image), which will improve the quality and detailed 
expression of the target image [45]. At the same time, the multi- 
dimensional information will provide richer feature information for 
target reconstruction, when the detector captures less target information 
due to the scattering system being more complex. Therefore, in this 
paper, we use the intensity (S0), Q component (S1), and DoLP informa-
tion to construct the training dataset and testing dataset.

The complexity of the scattering system can be expressed by the 
optical thickness (OT), which can be expressed as [46]: 

OT = μ × d (3) 

where μ is the attenuation coefficient, and d is the path length 
through the scattering media. In this paper, the scattering media em-
ploys a turbid suspension of water-milk system. From Eq (3), it can be 
known that increasing the SID (increasing d) will increase the OT of the 
corresponding scattering environment. And then, the scattering system’s 
attenuation coefficient depends on the particle density and radius in the 
scattering system. In fact, it is still challenging to precise control over 
particle density and radius, and their variations in the scattering me-
dium can influence the attenuation coefficient at a macroscopic level. 
So, when we modify the water-milk suspension’s concentration to 
change the turbidity, the scattering system’s attenuation coefficient will 
vary, thereby influencing the OT.

2.2. Measurement system

We obtained the underwater polarization dataset through the 
following experimental setup as shown in Fig. 1, where (a) is a schematic 
diagram of the experimental setup and (b) is the actual experimental 
setup. Our experiments are conducted in a darkroom. In order to 
simulate the real underwater environment, in this paper, we add 
different volumes of milk to clean water to simulate the turbid 
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underwater environment to obtain scattering images. We use a clear 
glass tank as a container, pour clean water with a volume of 340 mm ×
190 mm × 140 mm, and paste black shields on three side-walls and the 
bottom of the glass tank to avoid ambient light interference. The green 
LED light is selected for active lighting, and a linear polarizer is fixed in 
front of the LED light to make the horizontally polarized light, that is S =
(1, 1, 0, 0) T. In order to obtain the pixel-level corresponding dataset of 
objects under turbid water, we use building blocks as the bed plate and 
supporting connectors that can be fixed on the bed plate. The objects 
adhering on these connectors ensure the concrete position of the targets, 
which provides a physical basis for the subsequent shooting of pixel- 
level corresponding datasets. The training targets are made of steel. In 
addition, we treat the images taken in clear water as the clear image, 
that is, labels, instead of the image taken in the air as labels. That is 
because the refractive index of air and water is different, so the field of 
view of the image will be different when the object is captured in the air 
and underwater in the same position, which will cause the image not to 
correspond at the pixel level. To capture the training dataset of turbid 
underwater, we add 10 ml milk to clean water, stir continuously to make 
the water evenly cloudy, and fix the target at a distance of 9 cm from the 
front surface of water, that is, SID of d = 9 cm. And in this situation, the 
turbidity is measured to be 133NTU by the turbidimeter.

In order to make targets for being photographed, we engrave 
different patterns with a laser on the steel plate. We fixed the target in 
turbid water in the same order as that in clear water and used the 
commercial DoFP (division of focal plane) polarization camera (LUCID, 
PHX055S-PC) with pixel counts of 2048 × 2448 to capture images. Then 
the images are divided into four different polarization orientations of 0◦, 
45◦, 90◦, and 135◦ respectively, in which the size of each polarization 
image is 1224 × 1024. The intensity image (S0), Q-component image 

(S1), and DoLP image required for the training set can be calculated by 
Eq. (1) and Eq. (2) from original polarization images.

2.3. Dataset preparation

The scattering underwater images captured by the camera under 
incoherent light are shown in Fig. 2. When the OT increases, the 
captured picture will be more blurred due to increasing scattering effect. 
The training set is composed of scattering images of S0, S1 and DoLP in 
turbid water, as shown in Fig. 2, and the following different testing data 
sets are also composed of these data (scattering images of S0, S1 and 
DoLP). We take 110 groups of polarization images, each group with four 
polarization directions (0◦, 45◦, 90◦, 135◦). In addition, we expand them 
to 2000 to get the training set. Limited by the hardware memory and 
computing power of training neural networks, the input image size of 
the neural network in this article is 256 × 256 pixels.

2.4. Network design

As shown in Fig. 3, the backbone of the network is the improved U- 
Net, which is consisted of dense blocks [47]. And then, the high- 
resolution spatial information of the target is extracted from the input 
through the three-layer dense blocks in the part of the front-end encoder, 
and the first two-layer of dense blocks are followed by down-sampling. 
After that, the features are entered into the transformer module to 
integrate the global context features. These features are input to the part 
of the back-end decoder and combined with high-resolution convolu-
tional features, which are from the front-end encoder, through skip 
connection.

The transformer module consists of four layers of transformer layer, 
which is based on the Multi-head Self-Attention (MSA) [39]. Features 
size H×W×C, which are output by the encoder, are reshaped to a size of 
HW/M^2 × M^2 × C, and then these are divided into non-overlapping 
windows of size M×M, before being manipulated by the transformer 
layer. The structural design of the self-attention is based on our previous 
work [31]. We perform three attention functions in parallel and 
concatenate the results as a window multi-head self-attention (WMSA) 
[48]. Finally, feature transformation is operated by a multilayer per-
ceptron (MLP) with a Gaussian error linear unit (GELU). And LayerNorm 
(LN) is added before the WMSA and MLP. Then, the global feature and 
the local feature both are input into the decoder, which consists of dense 
block and up-sampling. Subsequently, features output from decoder are 
input into the two layers of convolution, and then the clear target image 
of 256 × 256 can be obtained from the output of the decoder.

We use MAE as a loss function to drive the interaction of polarization 
features in the network, which can be expressed as: 

MAE =
1

M × N
∑M

i=1

∑N

j=1
‖X(i, j) − Y(i, j)‖ (4) 

where X(i, j) represents the pixel of the original target, Y(i, j) represents 
the pixel of the reconstructed image, and M and N represent the size of 
the image. We trained the model in an image processing unit (NVIDIA 
RTX 3090) using a Pytorch framework with Python 3.6. To get the best 
optimal model, we trained 150 epochs. The optimizer is the Adam (Add 
Momentum Stochastic Gradient Descent) with a learning rate of 0.0001.

2.5. Imaging quality

In this paper, to assess the quality of the output of the network, we 
adopt several evaluation metrics, i.e., Pearson Correlation Coefficient 
(PCC), MAE, Mean Squared Error (MSE), Root Mean Square Error 
(RMSE) and Peak Signal-to-Noise (PSNR) [49,50]. The PCC with the 
value between 0–1, is a way to measure the similarity of images. It can 
be expressed as [51]: 

Fig. 1. Experimental setup for underwater polarization imaging. (a) Schematic 
illustration of the experimental setup; (b) Actual illustration of the experi-
mental setup.
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PCC =

∑w
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∑h
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2
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where Y(i, j) represents the pixel of the reconstructed image, G(i, j) 
represents the pixel of the original target, G1 and Y1 represent the mean 
of the original target and the network reconstruction image respectively, 
and M and N represent the size of the image. The MSE between the 
original image and the predicted image (G, Y) of size M×N can be rep-
resented as: 

MSE =
1

MN
∑m− 1

i=0

∑n− 1

j=0
[G(i, j) − Y(i, j)]2 (6) 

The RMSE measures the deviation between the predicted image and 
the original image and is sensitive to outliers. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
MN

∑m− 1

i=0

∑n− 1

j=0
[G(i, j) − Y(i, j)]2

√
√
√
√ (7) 

The PSNR is defined as: 

PSNR = 10 × log10
MAX2

MSE
(8) 

where MAX is the maximal value in the image.

3. Result and discussion

In this section, we have designed and explored different experiments 
to test the trained TIU-Net to demonstrate that our proposed method can 
take full advantages of polarization information. Then, our method can 
achieve high-quality and strong-generalization imaging through scat-
tering media in turbid underwater.

3.1. Untrained different-structure targets

One of the indicators for assessing the stability of a reconstructed 
network model is its ability to accurately predict invisible targets in the 
training set. To demonstrate the robustness of our model, we selected 
three sets of same-material targets with varying degrees of correlation to 
those in the training set and evaluated their reconstruction performance. 
Firstly, other conditions remain unchanged, we replace the targets with 
different levels of complexity, which have not appeared in the training 
set. We set the digital target, alphabetical target, and Chinese-character 
target separately, and their relevance to the structures of training set 
decreases in order[52,53]. They are placed in the underwater environ-
ment to obtain corresponding scattering polarization images (i.e., S0, S1, 
and DoLP). As can be seen from Fig. 4, the proposed TIU-Net can 
reconstruct digital targets completely. Even small detail (target “6″) in 
background can be also reconstructed clearly. Fig. 4(b) is the scattering 
images of S0, which can be seen that the target is almost completely 
masked by the noise. For the sake of conciseness in the image presen-
tation, we only display scattering images of S0 in the following result 
display.

Further, in Fig. 5 and Fig. 6, the more complex alphabetical targets 
and Chinese-character targets can be also reestablished by our proposed 
TIU-Net effectively. From Fig. 5(c) and Fig. 6(c), it can be seen that the 
structure of targets is complete and the contrast of images is high. 
Meanwhile, there is no unnecessary noise in the background of results 
nearly.

The proposed method is capable of recovering untrained targets of 
varying complexity, which proves the ability of our network to recon-
struct targets got in turbid underwater with high quality. In Table 1, 
more than 80 % similarity has been achieved between the recovery 
outcomes for various structures and the matching original pictures. 
Additionally, from Table 1, the difference among other indicators (MAE, 
MSE, RMSE and PSNR) of the various objectives varies slightly. It can be 
seen that the TIU-Net not only achieve high-quality imaging, but also 
demonstrates well stability. Even the Chinese-characters, whose struc-
tures are least relevant to the training set, can be accurately recon-
structed with the PCC of more than 82 %, and other relevant data are 
also satisfactory.

3.2. Untrained different-material targets

In addition, we set targets with different-materials compositions, 
such as “Steel-Wood” (with Steel as the target and Wood as background) 

Fig. 2. (a) Original target; (b) Scatting imaging by I (S0); (c) Scatting imaging by Q (S1); (d) Scatting imaging by DoLP.

Fig. 3. The overall structure of the proposed TIU-Net.

Fig. 4. The test results of untrained digital targets. (a) Ground truth; (b) The 
scattering images (S0); (c) Reconstructed images.
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and “Paper-Steel” (with Paper as the target and Steel as background), 
which are different from the materials’ compositions of the training set. 
All else being equal, the camera obtains the corresponding polarized 
scattering images. Table 2 shows the special elements of the Muller 
matrix (MM) for the used material [54,55]. The differences in polari-
zation properties between different materials can be expressed through 
the parameters of MM. The test results can be found in Fig. 7. From 
Table 2, the steel has high reflectivity and low depolarization charac-
teristics, and wood has high depolarization and low reflectivity. Mean-
while, there is the steel in the targets of the training set. So, when setting 
targets as “Steel-Wood”, the steel part can be reconstructed and rela-
tively bright, while the polarization characteristics of wood are weak, 
and the background part is not completely reconstructed and there is 
more noise. When targets are set as “Paper-Steel”, the reconstruction of 
paper part is incomplete, due to its weaker polarization characteristics 
and large differences from the polarization characteristics of steel, 
which can be seen from Table 2. While the background part of steel 
reconstruction is relatively bright and has less noise. In Table 3, evalu-
ation indicators for different materials have been listed and demon-
strated, in which it can be seen that the “Steel-Wood” has better 

performance on data because the steel targets are partially rebuilt. For 
the “Paper-Steel”, although its background is reconstructed, the target is 
composed of material with a large gap from the training set. So, the PCC 
of the reconstruction results is only about 46 %, and other indicators are 
relatively less than those of the “Steel-Wood”.

From generalization results for different-materials targets, we can 
know that the TIU-Net’s performance of the reconstruction will decrease 
when the material is not trained by the network, which is related to the 
difference in polarization characteristics between the training material 
and the test material. In general, we can improve the adaptability of the 
model to different materials by enriching the materials of the training 
set.

3.3. Untrained underwater environments with different turbidities

Polarization characteristics of the target are less susceptible to 
scattering particles because it can suppress the backscattering light to 
some extent. Therefore, the network which makes full use of polariza-
tion information will be more stable for an unknown scattering envi-
ronment. In this section, we create the turbid underwater environment 
with increasing concentration of scattering particles by adding the 
increasing volume of milk into water, and obtain polarization scattering 
images to test the stability of our proposed model. We obtain the po-
larization scattering image in the cases of 10 ml, 11 ml, 12 ml, 13 ml, 14 
ml, and 15 ml milks in turns, and calculate the corresponding turbidity 
by turbidimeter as 133NTU, 148NTU, 162NTU, 174NTU, 187NTU and 
197NTU respectively. The test results can be found in Fig. 8.

It can be seen that targets of different structural complexity in the 
turbid underwater at 133-162NTU can be clearly and completely 
reconstructed. Relatively simple digital targets in the turbid underwater 
of 174-187NTU milk can be accurately reconstructed, while alphabetical 
and Chinese character targets are poorly reconstructed. Until the volume 
of added milk reaches to 197NTU, the targets cannot be reconstructed 
totally. When targets in the turbid underwater with 133-174NTU, the 
polarization information is not affected by the scattering media enough 
to make the target information be unable to be interpreted and recon-
structed by the TIU-Net. From the quantitative indicators in Table 4, in 
the turbid underwater at 133-174NTU, the TIU-Net is stable and there is 
not much gap among them. When beyond 174NTU, the scattering im-
ages cannot be fully deciphered by the TIU-Net, resulting in incomplete 
reconstruction of targets and sharp drop in evaluation indicators. Ulti-
mately, the TIU-Net is capable of extended imaging beyond the con-
centration of the training set by 40 %, when trained with a single 
concentration. Increased underwater turbidity will result in less target 
information received by the detector, but our method, combining the 
advantages of polarization characteristics with the capabilities of TIU- 
Net, enhances generalization capability of imaging at different concen-
trations. It notes that the model trained by polarization information of 
targets is more stable. In addition, while fully extracting detailed fea-
tures from scattering images obtained in turbid underwater, we inte-
grate long-range information to make full use of the polarization 
characteristics of the target to improve the target reconstruction.

3.4. Untrained scattering imaging distances (SID: d)

The TIU-Net still produces good results when the SID is extended 
because the target polarization properties are less impacted by the 
scattering media during transmission. When the SID increases, the new 
MMs of the scattering media (M) are calculated by multiplying the MMs 
of the initial scattering media (Mi) by the additional MMs of thickness 
(Ma), according to the polarization scattering transport theory, i.e 
M=Mi × Ma. As a result, when the model generalizes for SIDs, it also 
generalizes for the variable MMs. Our proposed TIU-Net can obtain the 
scalable MMs, which belongs to the corresponding scattering media, by 
the complete study and use of polarization features. Hence, in this sec-
tion, we change the SID, that is to say moving the target’s positions for 

Fig. 5. The test results of untrained alphabetical targets. (a) Ground truth; (b) 
The scattering images (S0); (c) Reconstructed images.

Fig. 6. The test results of untrained Chinese-character targets. (a) Ground 
truth; (b) The scattering images (S0); (c) Reconstructed images.

Table 1 
The average evaluation indicators of the different targets.

Digital targets Alphabetical targets Chinese-character targets

PCC 0.8488 0.8389 0.8220
PSNR 15.5459 14.6976 14.4135
MAE 0.1136 0.1304 0.1353
MSE 0.0300 0.0358 0.0397
RMSE 0.1704 0.1878 0.1975

Table 2 
The Muller matrix elements of the materials utilized in the experiment 
[54,55].

Material m22 m44

Steel 0.975 0.990
Paper 0.265 0.247
Wood 0.215 0.160
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obtaining different distances from the front surface in the scattering 
system, for testing the TIU-Net’s generalization on the SIDs. We place 
the target at the SID of 8 cm, 9 cm, 10 cm, 12 cm, and 13 cm respectively, 
with other conditions remained unchanged, and the camera captured 
the corresponding polarization scattering images. The results can be 
seen in Fig. 9, in which the TIU-Net model can clearly and completely 
reconstruct the target of all complexity when the SID lies in the range of 
8–10 cm. At the SID of 12–13 cm, the model recovery quality is poor, the 
background noise appears in results, and partial reconstruction of the 
target is incomplete. In short, the TIU-Net is capable of extending im-
aging beyond the SID of the training set by 33 %. It notes that when 
trained with a single SID, our polarization reconstruction network can 
interpret the target information in the above range of SID. When the SID 
is less than that of the training set, the captured scattering images have 
more targets’ information features, so our polarization reconstruction 
network can completely reconstruct the targets. What’s more, we 
calculate relevant metrics to assess the generalization of our method for 
the SIDs depicted in Table 5. When the SID is within 10 cm, the evalu-
ation indicators still have excellent performance, and the PCC of results 
are all over 75 %. When the SID increases, the transmission distance of 
the target information in the scattering media also increases accord-
ingly, resulting in the output field’s backward scattering increasing. 
Then, from the Fig. 9 (12 cm and 13 cm), the background noise becomes 
noticeable and the matching evaluation indicators decrease distinctly in 
Table 5.

Based on the analysis of Eq (3), variations in the turbidity of the 
scattering media and the SID will impact the change of OT. These 
changes signify fluctuations in the complexity of the scattering media, 
consequently affecting the discernment of target information. So, from 
the results of test experiments on the concentrations of scattering media 

Fig. 7. The test results of targets with untrained materials. (a) Ground truth; (b) The scattering images (S0); (c) Reconstructed images.

Table 3 
The average evaluation indicators of the different materials.

PCC PSNR MAE MSE RMSE

Steel-Wood 0.6208 11.6649 0.2054 0.00741 0.2723
Paper-Steel 0.4615 8.9919 0.2706 0.1282 0.3581

Fig. 8. The test results of untrained turbidity of water.

Table 4 
The average evaluation indicators in different turbidities.

PCC PSNR MAE MSE RMSE

133NTU 0.8065 14.4698 0.1616 0.0351 0.2221
148NTU 0.7274 12.6777 0.1644 0.0576 0.2367
162NTU 0.7157 12.5699 0.1735 0.0598 0.2410
174NTU 0.6554 11.7344 0.1917 0.0713 0.2645
187NTU 0.5770 10.8294 0.2136 0.0869 0.2929
197NTU 0.5740 10.7605 0.2138 0.0884 0.2952

Fig. 9. The test results of untrained SIDs.
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and SID, we can see that our proposed TIU-Net has superior performance 
in the underwater scattering environment for varying OTs. That has 
important implications in real applications of underwater imaging.

3.5. Comparison with other existing methods

To further prove that our method has certain advantages for target 
reconstruction in turbid underwater, in this section, we will compare our 
method with other existing underwater imaging techniques, including 
Dark Channel Prior (DCP) [56], polarization dehazing method (PDM) 
[57], polarization dehazing net (PDN) [58], polarization based U-Net 
(PU-Net) [59], modified U-Net (MU-DLN) [30]. The corresponding re-
sults are shown in Fig. 10, where all methods use the dataset obtained in 
the same underwater environment to train and test the model for 
obtaining a fair performance comparison.

From the results, both the DCP and PDM have a slightly dehazing 
effect on the scattering pictures obtained in turbid underwater, but the 
target is not clearly seen. These methods are more suitable for scenarios 
with less scattering influence and have certain requirements for 
parameter selection. From Table 6, the PDM introduced polarization 
information has a better performance. Hence, incorporating polarization 
features into the restoration algorithm based on the physical model also 
can enhance the imaging quality.

The PDN method can reconstruct the target, but the sharpness and 
contrast are not high, so, the result of outputs still looks blurry. This 
network structure is relatively simple, and available polarization infor-
mation can’t be adequately retrieved for more dense underwater envi-
ronments. The PU-Net method directly uses (0◦, 45◦, 90◦, 135◦) as the 
training set, and the MU-DLN method only uses the S1 as the training set. 
They don’t make efficient use of polarization’s physical prior, which 
prevents them from amplifying the effects of polarization properties on 
the model. As a result, both methods reconstruct the target poorly and 
incompletely in this environment. The above network structures are 
based on CNN; however, they didn’t consider the global information of 
datasets with hidden target information. Additionally, we train the 
improved U-Net without the transformer module (IU-Net) in order to 
show the effectiveness of the added transformer module, and the test 
results are shown in the Fig. 10. According to the result in Fig. 10, even if 
the IU-Net can also reconstruct the target, the extraction of specific 
features and general features of the model do not strike a balance, 
leading to distinct background noise and a low contrast of the recon-
struction target. In contrast, from Fig. 10, our proposed TIU-Net can 
reconstruct unknown objects in murky underwater with higher quality. 
And all of the targets are completely reconstructed without missing 

details. The resulting pictures have high resolution and contrast. Our 
approach leverages the further analysis of polarization information, 
specifically selecting S0, S1, and DoP as the training set. By addressing 
CNN’s limitations in long-distance feature extraction through the 
transformer model, we successfully achieve the efficient reconstruction 
of hidden targets obscured by dense scattering media. In Table 6, the 
evaluation indicators of the different methods are also calculated, from 
which we can see that our method has better performance than other 
methods. What’s more, the parameters and Floating Point Operations 
(FLOPs) are calculated for different methods to estimate the complexity 
of the network, from which it can be known that the TIU-Net can 
improve the quality of images without consuming too many resources. 
Meanwhile, it should be noted that in our computational environment 
(Windows Server 10 (Version 21H1) Inter(R) Core (TM) i7-9750H CPU 
@2.60 Hz 2.59 GHz, and 16.0 GB of RAM), after training, our proposed 
TIU-Net just requires 0.09628 s for reconstructing an image, which 
guarantee the higher imaging efficiency.

4. Conclusion

In this article, we propose a framework that integrates the trans-
former and CNN for extracting global and local polarization features, 
enabling a comprehensive perception of such features. By incorporating 
physical priors related to polarization information, such as the S0, S1, 
and DoLP, we effectively integrate them into our network structure for 
total information mining. Experimental results show that the stability 
and generalization of our proposed TIU-Net are greatly improved. It can 
effectively reconstruct the targets with different structures and materials 
in the turbid underwater environment. And our method can also realize 
cross-conditional generalization imaging with variational OTs. It is of 
great significance for target reconstruction in complex underwater sce-
narios. There are numerous distinctive characteristics of polarization 
that can be explored, and in the future, these polarization features could 
be integrated with neural networks in a more scientifically rigorous 
manner to achieve a more adaptable learning framework.
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Table 5 
The average evaluation indicators of the different SIDs.

PCC PSNR MAE MSE RMSE

8 cm 0.8012 14.1890 0.0434 0.1357 0.2000
9 cm 0.7964 14.0736 0.0449 0.1602 0.2522
10 cm 0.7732 13.7789 0.0400 0.1676 0.2614
12 cm 0.5982 11.2101 0.0805 0.2104 0.2820
13 cm 0.4022 9.05657 0.1171 0.2579 0.3411

Fig. 10. The test results from different methods.
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